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1. INTRODUCTION. What is randomness? Are there random events in nature? Are
there laws of randomness?

These old and deep philosophical questions still stir controversy today. Some schol-
ars have suggested that our difficulty in dealing with notions of randomness could
be gauged by the comparatively late development of probability theory, which had a
somewhat hampered development [20], [21]. Historians generally agree upon the year
1654 as a convenient landmark for the birth of mathematical probability. At that time,
some reasonably well-articulated ideas on the subject were advanced in the famous
correspondence of Pascal and Fermat regarding the division of stakes in certain games
of chance. However, it was only in 1933 that a universally accepted axiomatization
of the theory was proposed by A. N. Kolmogorov [28], with many contributions in
between. That is, almost three hundred years after its beginnings, and a hundred years
after Cauchy’s work on the rigorization of analysis, probability theory finally reached
maturity. It achieved the status of an autonomous discipline of pure mathematics, in-
stead of being viewed as a mixed branch of applied mathematics and physics.

In contrast, the uses of notions of randomness are as old as civilization itself. It
appeared in a variety of games of chance (coin-tossing, dice, etc.), as well as in divina-
tion, decision-making, insurance, and law. Many reasons for this discrepancy between
theory and application have been put forward. One suggestion is that a full develop-
ment of the theory, going beyond combinatorics, had to wait for the creation of the
very sophisticated mathematical tools and concepts of set theory and measure theory.
A more plausible reason could be that our cognitive (and even psychological) consti-
tution, which might have evolved to look for patterns and trends even where there are
none, is not well suited to grasp randomness.1

In support of that last idea, many psychological studies have shown that people
(even experts) perform poorly when using intuition to deal with randomness [2]. One
classical example2 is the ‘gambler’s fallacy’: the common (false) belief that, after a
sequence of losses in a game of chance, there will follow a sequence of gains, and vice
versa, in a kind of self-compensation.

What are the characteristics usually associated with randomness? A common idea
is to identify randomness with unpredictability. This intuition originates in people’s
experience with games of chance. For example, a sequence of coin tosses looks very
irregular, and no matter how many times we’ve tossed the coin, say a thousand times,
no one seems to be able to predict the outcome of the next toss. That arguably explains
the widespread use of randomizing devices, like coins, dice, and bones, to guarantee
fairness in gambling3 and decision-making.

However, one could question whether these are examples of “really” random phe-
nomena. After all, actual coin-tossing (for example) is a purely mechanical process,
governed therefore by Newton’s laws of motion. Hence, its outcome is as predictable,

1The mathematician Emile Borel claimed the human mind is not able to simulate randomness [34].
2A more subtle one is the Monty Hall problem (see Snell and Vanderbei [32]).
3The development of the mathematical analysis of games of chance seems to have been motivated not only

by the desire to devise winning strategies for the games but also by the desire to detect fraud in them [4].
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in principle, as the motion of the planets, once the initial conditions are given.4 The
observed unpredictability results from a peculiar combination of circumstances [24],
[49]. First, there is a kind of “instability” built into the system, of the kind usually
associated with meteorological systems; i.e., it is a dynamical system displaying sen-
sitive dependence on (some set of) initial conditions. That, coupled with our inability
to know these conditions with infinite precision, results in unpredictability in practice,
even though the process is totally lawful in the sense of classical mechanics. In other
words, we have an instance of the phenomenon of “chaos.”

It is reasonable to ask whether there are “intrinsic” (or ontological) notions of ran-
domness. The usual suggestion is the notion of “lawlessness,” also conceived of as
“disorder,” “irregularity,” “structurelessness,” or “patternlessness,” that we’ll discuss
later. It certainly includes unpredictability in some sense. But one needs to be care-
ful here. To begin with, one needs to distinguish between “local” irregularity versus
“global” (or statistical) regularities observed in many chance phenomena [43], [42].
For example, although we cannot predict the outcome of individual coin tosses, it is an
empirical fact that the proportion of heads (or tails) obtained after a great number of
tosses seems to converge to or stabilize around 0.5. Besides, there is a recurrent sense
of paradox lingering in the enterprise of looking for laws that govern lawlessness [11]:
after all, this last property seems to mean exactly the absence of any subjugation to
laws.

Concerning randomness in natural phenomena, it is not quite clear what one should
look for. Conceivably, some quantum mechanical phenomenon, like radioactive de-
cay [23], would be a good candidate to investigate. In this paper we won’t discuss
this very important topic. We will focus instead on the admittedly less ambitious but
more manageable question of whether it is possible at least to obtain a mathematically
rigorous (and reasonable) definition of randomness. That is, in the hope of clarify-
ing the concept of chance, one tries to examine a mathematical model or idealization
that might (or might not) capture some of the intuitive properties associated with ran-
domness. In the process of refining our intuition and circumscribing our concepts, we
might be able to arrive at some fundamental notions. With luck (no pun intended),
these might in turn furnish some insight into the deeper problems mentioned. At the
very least it could help one to discard some previous intuitions or to decide upon the
need for yet another mathematical model.

The history of mathematics shows that this strategy is frequently fruitful. An ex-
ample of this process was the clarification of the concept of ‘curve’. Not only did it
lead to the discovery of “pathological curves” (which are interesting mathematical ob-
jects in themselves, linked to fractals and Brownian motion) but also to the realization
that smoothness is a reasonable requirement in the formalization of the intuitive notion
of curve [19]. Another example, which is central to our discussion, was the clarifica-
tion of the intuitive notion of computability (see the next section).

Of course, this is not an easy task. The proposed model or idealization should be
simple, without also being totally trivial. One idea is to consider an abstraction of the
coin-tossing experiment, the so-called Bernoulli trials. Representing the occurrence of
heads by 0 and tails by 1, we associate a binary string to each possible outcome of a
successive coin-tossing experiment. We then ask: When is a binary string random?

To appreciate the difficulties involved, let’s examine the “paradox of random-
ness” [14]. It goes like this. Suppose you toss an honest coin repeatedly, say twenty-
three times. Consider the following outcomes:

4The mathematician and former magician Persi Diaconis was able consistently to get ten consecutive heads
in coin-tossing by carefully controlling the coin’s initial velocity and angular momentum.
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• 00000000000000000000000
• 01101010000010011110011
• 11011110011101011111011.

The first result is generally considered suspect, while the second and third “look” ran-
dom. However, according to probability theory all three outcomes, and in fact all the
223 possible outcomes, have the same probability of 1/223. Why, then, do the last two
outcomes seem random while the first does not?

It is conceivable that the ultimate reason for that perception “belongs to the domain
of psychology” [29], to be found in the structure of our visual-cognitive apparatus.
Such issues notwithstanding, the question is whether it is possible to distinguish ran-
dom from nonrandom strings in a mathematically meaningful way. Note that our intu-
ition cannot be trusted much in this task. It’s enough to observe that the second string
above consists of the first twenty-three digits of the binary expansion of

√
2− 1. So,

although it “looks” random, in the sense of exhibiting no obvious pattern, its digits
were obtained by a process (root extraction) that, by all reasonable standards, is not
random. Note the overall similarity with the third string, obtained by coin-tossing.

For strings it is only possible to develop a notion of degrees of randomness, there be-
ing no sharp demarcation of the set of all strings into random and nonrandom ones [7].
In fact, once a certain binary string with m zeroes is considered random, there is no
reason not to consider equally random the string obtained by adding (or subtracting)
one more zero to it (or from it).

The situation becomes clearer if one considers instead the set of all infinite binary
strings, or sequences of bits. Although in real life applications we are bound to en-
counter only finite, albeit very long, strings, it is nevertheless worth considering this
further idealization. The idea of taking infinite objects as approximations to finite but
very large ones is not new. For example, in equilibrium statistical mechanics, in order
to have a sharp notion of a phase transition one has to work in the so-called thermody-
namic limit, in which the number of particles tends to infinity (as does the volume, but
in such a way that particle density remains constant).5 The great advantage of working
with sequences is that they are easier to handle mathematically. This curious and com-
mon state of affairs is probably a result of treating a completed infinity as one whole
(though large) object, instead of having to keep track of a large (but finite) number of
objects (which makes combinatorics such a difficult craft). In particular, it is possible
to obtain a sharp result, that is, to write {0, 1}N = R ∪Rc, decomposing the set of
sequences into random and nonrandom ones.

But now the question becomes: What does it mean to say that an individual infinite
sequence of 0s and 1s is random? Historically, three main notions were proposed6:

• stochasticness or frequence stability, due to von Mises, Wald, and Church;
• incompressibility or chaoticness, due to Solomonoff, Kolmogorov, and Chaitin;
• typicality, due to Martin-Löf.

Interestingly, all these proposals ended up involving two notions apparently foreign to
the subject of randomness: algorithms and computability. With hindsight, this is not
totally surprising. In a sense to be clarified as we proceed, randomness will be closely
associated with “noncomputability.”

5As the late mathematical-physicist R. Dobrushin noted, infinity is a better approximation to Avogadro’s
number 6.0× 1023 than to the number 100.

6In this paper we only examine these. For some recent developments, see Ambos-Spiess and Kucěra [1].
Comprehensive discussions can be found in the monographs [7], [33] or the reviews [41], [36], [18].

48 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 109



Let � = {0, 1}, and let �∗ be the set of all strings (finite words) of 0s and 1s, in-
cluding the empty string �. Call �N the corresponding set of all binary sequences.
A preliminary observation is that any reasonable notion of a random sequence makes
sense only with respect to a given probability distribution on the set �N [41]. In fact,
a sequence with twice as many 0s as 1s would not be considered random if each digit
occurs with probability p = q = 1/2 (honest coin), but it could be random if p = 1/3
and q = 2/3. Thus, although originally motivated by foundational issues, the follow-
ing discussion presupposes the usual measure-theoretic probability theory.

In the following we deal with Bernoulli(p, q) probability measures on �N, where
p + q = 1. These are product measures specified by their action on strings: to wit,
the probability of the string x1 . . . xk equals pmqk−m , where m is the number of 1s
and k − m the number of 0s in it. Also, we will sometimes identify a real number in
[0, 1] with a sequence in �N through its binary expansion, x = 0.x1x2 . . . .7 Then the
Bernoulli(1/2, 1/2) product measure corresponds to the uniform measure on [0, 1],
that is, to Lebesgue measure λ.

2. THE LOGIC CONNECTION: ALGORITHMS AND COMPUTABILITY. If
randomness is to be conceived of as lawlessness, then one has to respond to the query:
What is a “law”? This is too broad a question, and we’ll focus on the (necessarily
narrow)8 mathematical notion of ‘law of formation’, say, that generates the succes-
sive digits of a binary sequence. To clarify what that could mean, we make a short
digression to recall some old controversies in the foundations of mathematics [30].

According to the “constructivist” school9 mathematical objects exist insofar as we
are able to construct them in some way. In particular, every infinite structure should be
given by some method telling how to construct it. In contrast, from Hilbert’s “formal-
ist” point of view existence corresponds to absence of contradictions, i.e., to consis-
tency in a formal axiomatic system.

In the context of his investigations on the nature of the real numbers, Borel (1909)
suggested that we only have access to real numbers (in fact, to any mathematical ob-
ject) that are specifiable or describable in a finite number of words (in some language).
It was known that this notion led to the Richard-Berry paradox.10 In fact, Borel used
this paradox and a Cantor-like diagonal argument to conclude that the set of finitely
describable reals, though the only ones accessible to us, are not effectively enumerable,
meaning that we cannot decide whether or not a given finite description defines a real
number [47]. Unfortunately, he didn’t develop a rigorous notion of effectiveness. Like
most mathematicians at the time, he used the intuitive notion of effective procedure,
conceived of as some kind of finite, step-by-step recipe or prescription that, if duly fol-
lowed, arrives at a desired result (e.g., solves a given problem). A rigorous notion of
an effective procedure or algorithm (and of computability) appeared only in the 1930s,
as the culmination of foundational investigations in mathematical logic, being one of
the great achievements of modern mathematical science [15].

The need for a clarification of the concept of algorithm, a notion deeply entrenched
in mathematical practice [26], was only gradually felt. Properly speaking, it is a meta-
mathematical concept, and it came to the fore with the creation by David Hilbert of

7Except for x = 1, for which we take the expansion .111 . . . , we choose the expansion ending in an infinite
sequence of 0s whenever x is a dyadic rational.

8So as to avoid the discussion of the concept of “natural law” in sciences like physics.
9Which included Gauss, Kronecker, Lebesgue, Borel, Brouwer, and Weyl, to cite a few.

10A version of it goes like this: Define a natural number as “the least number that cannot be described in
less than twenty words.” Does this number exist? Any answer leads to a contradiction.

January 2002] WHAT IS A RANDOM SEQUENCE? 49



the new discipline of metamathematics.11 In his famous list of twenty-three problems
proposed at the Second International Congress of Mathematics in Paris (1900), prob-
lem number ten, though not mentioning the word algorithm, asked for a “procedure”
that would decide in a finite number of steps whether a given Diophantine equation12

has an integer solution. Almost three decades later, in 1928, Hilbert and Ackermann
formulated the Entscheidungsproblem (or Decision Problem) for first order logic, “the
principal problem of mathematical logic.”13 If someone suspected that such problems
had a negative solution (which, by the way, was not the case for Hilbert) then, in order
to prove it so, one would need to be able to survey the class of allowed effective pro-
cedures. Only then would it be meaningful to say that a given (class of) problems has
no effective solution.

Around 1936, due to the efforts of such logicians as Gödel, Church, Kleene, Post,
Markov, and Turing, many apparently different candidates for “the” adequate notion
of algorithmic or effective procedures were available [22]. Probably the simplest was
the one proposed by Turing in 1936, which we describe next.

Turing’s model of computation is an idealization based on his analysis of the
steps performed by a human calculator (a ‘computor’). It consists of an infinite one-
dimensional tape (i.e., there are no memory limitations), equally divided into cells,
and of a control head with a cursor capable of moving along the tape. Suppose that
each cell can contain only the symbols 0, 1, or � (blank). The set of tape symbols is
S = {0, 1,�}, while the set of input symbols is � = {0, 1}.

q
0
  q

1
  q

2
 ... q

f

011 1

Figure 1. A Turing machine.

The control head acts through the read/write cursor that scans one cell at a time.
At each given discrete instant, the control head can be in any one of a finite number
of internal states belonging to a set Q = {q0, q1, . . . , q f }, among which there are the
special initial state q0 and the final (or terminating) state q f . Depending on the symbol
being scanned and the state the control head is in, the cursor then writes a tape-symbol
on the cell, moves one cell either to the right (R) or left (L), after which the control
jumps to another state.

Hence, at each time, the machine’s operation is completely determined by the cur-
rent scanned symbol and the current state of the control head. That is, each step con-
sists in the execution of a quintuple (q, s; s ′, q ′, m), in the following sense. If q in Q
is the current state and s in S is the symbol scanned, then s ′ in S is then printed on the
cell, the control jumps to the new state q ′ in Q, the cursor moving to the next cell to

11The application of mathematical reasoning and methods to formal objects like formulas, axiom systems,
and proofs, which themselves become the target of mathematical investigation.

12An equation of general form P(z1, . . . , zn) = 0, where P is a polynomial in n variables with integer
coefficients.

13It asks for a general procedure that decides, in a finite number of steps, whether a formula of first order
logic is or is not a theorem.
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the right or left, signified by m in {L , R}. The head is now scanning a new cell and is
in another state, so it consults the corresponding instruction and the cycle begins anew.

So we can define a Turing machine (TM) as a list of quintuples, that is, in terms of
its instructions. More formally, a Turing machine is a function with domain in Q × S
and range in Q × S × {0, 1}∗. An important consequence is that there are only count-
ably many Turing machines. In fact, one codifies the instructions by an alphabet (say,
binary). As the set of instructions for each machine is always finite, one can then order
the machines by the increasing size of the instruction set (number of symbols in its
codification) and, for each size, by lexicographic order. In this way we get an enumer-
ation T M1, T M2, . . . of all Turing machines.

A computation by a Turing machine consists of the following. Initially, an input
x from {0, 1}∗ is written on the tape. To the left and right of it, all cells are blank.
The cursor is positioned at the leftmost symbol of x , and the control state is set at the
initial state q0. From there the machine follows the set of instructions. If the machine
eventually reaches the final state q f , the computation halts and the output is the string
T M(x) in {0, 1}∗ left on the tape (the computation “converges”). Otherwise, the ma-
chine goes on forever (the computation “diverges”). Therefore, each Turing machine
defines a partial function from the set of strings {0, 1}∗ to itself.14 In other words, a
computation is nothing more nor less than symbol processing.

Now each string in {0, 1}∗ is a binary representation of a positive integer through an
encoding function e : {0, 1}∗ → N. A partial function f : N → N is said to be Turing
computable if there is a Turing machine T M such that, for every n in the domain of
f , there is an input w in {0, 1}∗ with n = e(w) for which the machine eventually stops
and such that the output T M(w) satisfies f (n) = e(T M(w)).15 From the countability
of the collection of all Turing machines, it follows immediately that the set of (partial)
Turing computable functions is a countable subset of the uncountable set of all partial
functions from N to N. In this sense, very few functions are computable.

Another important result that emerged from Turing’s paper was the proof that there
are (infinitely many) universal Turing machines, i.e., machines that can simulate the
operation of any other Turing machine. The input of such a universal machine U con-
sists of an adequate encoding of the instruction set of the machine T M that we want
to simulate, followed by its input w. The output of U is then T M(w) [35].

Strictly speaking, we have assumed here that the input to a Turing machine consists
of the data and the program, suitably codified into one block of bits. Alternatively,
one could think of the data and program coming separately. Such an approach entails
modifying the machine by introducing a data (or work) tape and a program tape. In
this case the computer defines a partial binary function φ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗.
Moreover, as will become clear later, it is convenient to consider a restricted class of
Turing machines called prefix-free machines.

A language16 L is prefix-free if and only if no string of L is a prefix of another
string of L. So, for example, a binary prefix-free language cannot have both strings
10111 and 101110101 as words. A prefix-free machine is a Turing machine such that,
whenever φ(p, q) is defined (the computation with program p and input q converges)
and the string p is a prefix of string p′ with p �= p′, then φ(p′, q) is not defined. In

14In case the function is defined for all strings in {0, 1}∗, then the function is said to be total.
15Also, a subset A of N is said to be recursive if its characteristic function is Turing computable. This means

that there is an algorithm to decide whether or not an element belongs to A. On the other hand, if we only
require that A could be effectively counted, then it is said to be a recursively or effectively enumerable (r.e.)
set. More formally, A is recursively enumerable when it is the range of a computable function.

16I.e., a collection of strings (words) over a finite alphabet. For example, any subset of {0, 1}∗ is a language
over {0, 1}.
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other words, it defines a computable function φ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that,
for all q in {0, 1}∗, the function φq : {0, 1}∗ → {0, 1}∗ given by φq(p) = φ(p, q) has
a prefix-free domain. To satisfy this requirement, it suffices that the machine have a
finite program tape and a read-only cursor able to move exclusively to the right (see
Figure 2). The usual properties of the previous machines are preserved. In particular,
the existence of a universal prefix-free machine is assured.

q
0

q
1

q
2
 

q
f

011 1

0 11 10 0 0 0 0

Figure 2. A prefix-free Turing machine.

As mentioned, there were alternative suggestions put forward as the adequate
formalization of the intuitive notion of computability: Church’s lambda-calculus,
Kleene’s general recursive functions, Post’s automata, and Markov algorithms. Very
soon, however, it was proved that all those apparently distinct notions were in fact
equivalent, that is, they defined the same set of functions: namely, the computable or
partial recursive functions [40].

This, and other factors, led to the daring suggestion that the “right” mathematically
precise concept of computability had been found. This is the content of the famous

Church-Turing Thesis. The class of intuitively computable functions coincides with
the class of Turing computable functions.

Note that this is not really a “thesis” awaiting a proof. It is more like a rigorous defini-
tion proposed for the intuitive (nonrigorous) notion of computability. So, when people
started to refer to a method or procedure being effective, algorithmic, or mechanical,17

it was intended to mean that it can be implemented by a Turing machine.
Using his concept of effective procedures, Church (1936) was able to give a negative

answer to Hilbert’s Entscheidungsproblem. Shortly afterwards, Turing used a diagonal
argument to prove the undecidability of the Halting Problem and, by reducing the
Decision Problem to it, was also able to prove its undecidability.

Now, we have earlier made the suggestion that random sequences would be those
sequences that are “lawless.” If by that expression we mean that they should present
no nontrivial regularities or patterns whatsoever, then no sequence would be random.
In fact, a theorem of van der Waerden [8] asserts that in every binary sequence one of
the two symbols must occur in arithmetical progressions of every length. Therefore,
such a broad concept of “law” doesn’t work.

17The use of the adjective “mechanical” can be misleading. It intends to convey the idea of a routine process
that can be carried out without the need of ingenuity, but not necessarily in the sense of physical mechanics.
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Suppose that we restrict the notion of law to that of a “rule of formation” that gives
the consecutive digits of the sequence. Given the discussion above, we are led by
the Church-Turing thesis to the idea of an effective rule, as defined by a computable
function. Hence, we are naturally led to conceive of lawlessness as the absence of
computable regularities. We can now see, by using a cardinality argument, that this
proposal is inadequate as well. For, to get the set of lawless sequences we would need
to discard from �N all the lawful ones. The latter, however, constitute at most a de-
numerable set of sequences. The resulting set of candidate random sequences is too
large. In fact, consider the set of sequences such that x2n = x2n+1 for all n ≥ 1. Such
sequences are too “locally” ordered to be random, but because there are uncountably
many of them, some would have been included in the set of random sequences.18

3. RANDOMNESS AS STOCHASTICNESS. The sixth problem in Hilbert’s fa-
mous list (1900) is the following [13]:

The investigations on the foundations of geometry suggest the problem: To treat in the same
manner, by means of axioms, those physical sciences in which mathematics plays an important
part; first of all, the theory of probability and mechanics.

Note that Hilbert considered probability theory to be a branch of physics. Although
a commonly held view at the time, this is somewhat surprising coming from a for-
malist. In fact, the whole point of an axiomatic formulation is to highlight the formal
aspects of a mathematical theory, irrespective of its initial motivations and/or further
interpretations and applications [6].

In 1919 the physicist Richard von Mises proposed to develop the theory of proba-
bility as part of physics [45]. In a very influential work19 he suggested that the theory
should be based on the notion of random sequences, which he called “collectives”
(Kollectivs, in German).20 The basic insight was the global statistical regularity ob-
served in random experiments like coin-tossing, namely, frequency stability.

Definition 3.1. An infinite binary sequence x = x1 x2 . . . is random if it is a collective;
i.e., if it has the following two properties:

I. Let fn = �{m ≤ n : xm = 1} be the number of 1s among the first n terms in the
sequence. Then

lim
n→∞

fn

n
= p

exists and 0 < p < 1.

II. If  : {0, 1}∗ −→ {0, 1} is an admissible partial function (i.e., a rule for
the selection of a subsequence of x such that xn is chosen precisely when
(x1 x2 . . . xn−1) = 1), then the subsequence xn1 xn2 . . . so obtained has Prop-
erty I for the same p.

18Alternatively, not every lawless sequence would satisfy the Law of Large Numbers, which is taken to be a
necessary property of random sequences (see Section 3). This law holds except for a set of Lebesgue measure
zero, which can be uncountably large.

19Kolmogorov himself recognized von Mises’s influence.
20There is an anecdote about Banach who, when asked by state authorities about the relevance of his

work, replied that he was working on collectives; thereafter he wasn’t bothered anymore. I thank Profes-
sor Paul Schweitzer for telling me of this episode.
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Property I is known as the Law of Large Numbers,21 which in measure-theoretic
probability theory is a theorem, holding for almost all sequences x . Property II,
which is the requirement that frequency stability be preserved under the operation
of extracting infinite subsequences, eliminates such trivially nonrandom sequences
as 01010101010101 . . . . It has an interpretation in terms of gambling, the source
of many of von Mises’s arguments. In that context it is called the Law of Excluded
Gambling Strategy: a gambler betting in fixed amounts cannot make more profit in
the long run by betting according to a “system” than by betting at random. This is
certainly an intuitive requirement. Imagine a game in which you bet on the successive
bits of an apparently random sequence supplied by a casino. Now, if that sequence is
the binary representation of the number π and you are able to recognize it as such,
then by predicting in advance the next digit, you would have a gambling “system.”

Many criticisms were directed at von Mises’s proposals. Not only were his argu-
ments, based on gambling-house notions, considered inexact or at best semimathe-
matical, but also the central notion of “admissible” selections was not clarified at all.
Surely, many examples of admissible selection rules could be given: select xn for which
n is prime (or for which n is given by some other arithmetic law) or choose the xns
that immediately follow the occurrence of 001 (in which case the choice will depend
on the elements of the sequence), etc. However, if arbitrary selection rules (i.e., ar-
bitrary subsequences) are allowed, then collectives don’t even exist. This is known as
“Kamke’s argument.” In fact, given a sequence {nk}k≥1 with n1 < n2 < . . . , consider
a selection from x of the subsequence xn1 xn2 . . . . If all subsequences are allowed,
there will be one such that xnk = 1 for all k and another with xnk = 0. Therefore, no
sequence x could be a collective.

Kamke’s objection didn’t disturb von Mises, it would seem, because it used the un-
limited (nonconstructive) concept of existence of mathematical objects of set-theoretic
mathematics. In particular, in the argument above no “rule” for finding the subse-
quence is mentioned. We see here a need to clarify the notion of rules and the con-
comitant tension of the constructivist versus nonconstructivist viewpoints.

The next natural move was to restrict in suitable fasion the set of admissible selec-
tions. In 1937, Abraham Wald showed that, if the set S of admissible place selections
is countable, then collectives do exist [27]. More precisely, let

C(S, p) =
{

x ∈ �N : ∀� ∈ S, lim
n→∞

1

n

n∑
k=1

(�x)k = p

}
,

where 0 < p < 1, be the set of collectives with respect to S .

Theorem 3.2 (Wald). For any countable S and any p in (0, 1), 	 C(S, p) = 2ℵ0; that
is, C(S, p) has the cardinality of the continuum.

This result still left entirely open the question of which class S to choose. In 1940,
the logician Alonzo Church proposed that, in order to isolate precisely those sequences
that are “intuitively” random, the set of admissible place selections should consist of
the computable or partial recursive functions. That is, only “effectively calculable”
selections should be admitted. Thus a central notion of the Theory of Algorithms (or
Recursive Function Theory or Computability Theory) entered the scene.

As a first attempt at the clarification of the concept of an individual random se-
quence, the Mises-Wald-Church viewpoint had some desirable traits. First of all, col-

21In a weaker version, it was first proven by Jakob Bernoulli, appearing in his posthumously published book
Ars Conjectandi (1713).
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lectives are abundant, constituting a set of measure one in �N. In addition, no collec-
tive can be generated by an algorithm. For, if it could be, then one could construct
computable selection rules 0 and 1 as follows: for all n ≥ 1,

{
0(x1 x2 . . . xn−1) = 1 if xn = 0,

1(x1 x2 . . . xn−1) = 1 if xn = 1.

Furthermore, every random sequence is Borel-normal in base 2, meaning that every
block of bits of size k in the sequence x appears in it with the “right” asymptotic
frequency of 1/2k . This property, a case of the Law of Large Numbers, was discovered
by Borel in 1909. Moreover, he proved that, relative to Lebesgue measure, almost every
real number x in [0, 1] is absolutely normal; i.e., x satisfies the frequency condition
for blocks of digits in any base representation. Borel normality is clearly a desirable
property for any reasonable notion of randomness. In fact, it was initially proposed as
the defining characteristic of a random real number. Unfortunately, not every normal
number is random. For example, Champernowne proved in 1934 that the number

.0123456789101112131415 . . .

is Borel-normal in base 10 [37], though clearly computable. The same is true of the
Copeland-Erdös (1946) number .23571113171923 . . . , obtained by concatenation of
the prime numbers. Curiously, aside from these somewhat contrived examples, and in
spite of the fact that most (in the sense of Lebesgue measure) real numbers in [0, 1]
are normal, it is not known whether such fundamental mathematical constants as π , e,√

2, or log 2 are normal.22

A definitive blow against the idea of randomness as stochasticness was struck in
1939 by Jean Ville in his detailed analysis of the notion of collectives [44]. He showed
that collectives are not “random enough” by proving that there are collectives satisfy-
ing

fn

n
≥ 1

2

for all n, i.e., showing a preference for 1s over 0s (though still having limiting relative
frequency equal to 1/2). Moreover, according to Levy’s Law of the Iterated Logarithm,
the set of sequences that exhibit this behavior has Lebesgue measure zero. In other
words, the “collectives” don’t satisfy all the laws of randomness of probability theory,
understood to mean the laws holding with probability one, which renders the Mises-
Wald-Church notion of randomness unsatisfactory.

4. RANDOMNESS AS INCOMPRESSIBILITY. The source of the “paradox of
randomness” mentioned in the introduction is that we don’t expect a regular outcome
from a random experiment. This seems to be the intuition behind the famous “argu-
ment from design” frequently used against Darwin’s theory of evolution: how could
an intricately designed structure such as the human eye have evolved by pure chance?
It’s inconceivably improbable and therefore a “cause” must be responsible for its oc-
currence.23

22We refer to their fractional parts, which are numbers in [0, 1]. For some fascinating ideas in this direction,
see Bailey and Crandall [3].

23Of course, the cause is nothing but Darwin’s natural selection, which is essentially a nonrandom process,
as forcefully described by the biologist R. Dawkins [16].
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A possible abstract version of this argument, based on an original intuition due
to Laplace, goes as follows. Suppose the object of interest is a binary string w (i.e.,
assume that all objects of interest can be codified as such strings) of length |w| = n.
The question is to decide whether this string appeared by pure chance (i.e., by coin-
tossing) or was “designed.” The probability of its being generated by chance is 2−n.
Now, suppose it was generated by some simple “mechanism” (or “cause”) that itself
can be codified (described) by a string with m bits, with m much smaller than n. This
would mean w is so regular that it can be (implicitly) described by the much smaller
string representing its generating “cause.” Therefore, it is 2n−m more likely that w was
generated by some cause than at random [25].

The idea of randomness as incompressibility was proposed independently (and al-
most simultaneously) by Ray Solomonoff, Andrei Kolmogorov, and Gregory Chaitin.
The intuition is that a string is “irregular” or “patternless” if it cannot be “described”
more efficiently than by giving the whole string itself. This is the notion of program-
size algorithmic (or descriptive) complexity.24 From its vantage point a string is ran-
dom if no program of size substantially smaller than the string itself can generate or
describe it.

For example, some (base 10) numbers, even large ones like 1,000,000,000,000, have
short representations; a case in point is the number just cited, which can be expressed
as 1012. But it is difficult to describe economically, say, the number 5,172,893,164,583,
except by writing it down digit for digit. The situation is exemplified even more dra-
matically by very long strings. Take, for instance, the highly “ordered” binary string
111 . . . 1 consisting of 10,000 copies of the digit 1. It can be described by the program
“print 1, 10,000 times.” Compared to the sequence itself, which is 10,000 bits long,
its description needs a little more than log2 10,000 ≈ 14 bits. On the other hand, to
describe an arbitrary “disordered” 10,000-bit-long string, we will most probably need
to print the string itself, which serves as its own (very long) description. As observed
in [39], randomness in this sense is due either to “extreme disorder” or to an “ex-
aggerated order”: the string is so uncharacteristically “complicated” that its precise
description cannot be shorter than itself.

To formalize these notions, consider w in {0, 1}∗, and let U be a universal Turing
machine. Let U (p) be the output of machine U when fed an input p from {0, 1}∗, and
let |p| be the length (in bits) of the word p. Then we record:

Definition 4.1 (Kolmogorov-Chaitin). The descriptive or algorithmic complexity
KU (w) of a word w with respect to the machine U is given by

KU (w) =
{∞ if there is no p such that U (p) = w,

min{|p| : U (p) = w} otherwise.

In other words, KU (w) is the size of the smallest input program p that, when fed to
the Turing machine U , outputs (“prints”) w and stops. Alternatively, it is the length
of the shortest binary program p that “describes” or “codifies” the “object” w. This
definition is universal or machine-independent in the following sense.

Theorem 4.2 (Invariance Theorem). If U is a universal Turing machine, then for
any universal Turing machine Ũ it is true that

KU (w) ≤ KŨ (w)+ cŨ

for all w in {0, 1}∗, where cŨ is a constant independent of w.

24To be distinguished from resource-based or computational complexity.

56 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 109



Proof. Let Ũ (q) = w and let sŨ be the program that simulates the machine Ũ in the
machine U : U (sŨ q) = Ũ (q) = w. Then p = sŨ q has length |p| = |sŨ | + |q|, and
letting cŨ = |sŨ |, we have

KU (w) = min
{p:U(p)=w}

|p| ≤ min
{q:Ũ (q)=w}

(|q| + cŨ ) = KŨ (w)+ cŨ .

One says that KU (w) is the “optimal” complexity25 of w in the sense that |KU1(w)−
KU2(w)| < c = c(U1, U2) for all w in {0, 1}∗ and any pair of universal Turing ma-
chines U1 and U2. One can then fix once and for all a universal Turing machine U and
write K (w) = KU (w).

The following result shows that there are few words with low complexity.

Proposition 4.3. �{w ∈ �∗ : K (w) < k} < 2k .

Proof. One can list all computer programs of length less than k, ordered by increasing
size:

�, 0, 1, 00, 01, 10, 11, . . . , 111 . . . 11,

yielding a total of 1+ 2+ 4+ · · · + 2k−1 = 2k − 1 programs. As each program gen-
erates at most one output for each input, we obtain the stated result.

Kolmogorov proposed to call an infinite sequence random if it has initial segments
(or prefixes) of high complexity. Such sequences are said to be incompressible.

Definition 4.4. A sequence x in �N is incompressible (or chaotic) when there is a
constant c such that

K (x(n)) ≥ n − c

for all n, where x(n) = x1x2 . . . xn .

Unfortunately, the Swedish mathematician Per Martin-Löf showed that no such se-
quence exists.

Theorem 4.5 (Martin-Löf). If f : N → N is a computable function such that

∞∑
n=1

2− f (n) = ∞,

then for any binary sequence x = x1x2 . . . it is the case that

K (x(n)) < n − f (n)

for infinitely many values of n.

In particular, the theorem holds for f (n) = log2 n. Therefore, every binary sequence
drops infinitely often below n − log2 n, that is, far below its own length. This deadlock

25Sometimes also called “entropy,” adding to the multitude of different notions bearing that name.
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led Martin-Löf to formulate his own notion of randomness, which we will discuss in
the next section.

On the other hand, Chaitin, Levin, Schnorr, and others were able to show that the
incompressibility idea can be made consistent by suitably restricting the class of al-
gorithms (or Turing machines). Chaitin’s concept of prefix-algorithms is probably the
simplest. The idea is reminiscent of the notion of prefix-free codes or languages used in
information theory. As we saw in Section 2, a prefix-algorithm is a partial computable
function φq , for fixed q, whose domain is prefix-free. Thus if the corresponding Tur-
ing machine halts for inputs p and p′, then neither input is an initial segment of the
other. There is a corresponding universal prefix-free Turing machine and basically all
notions developed earlier carry over to the treatment of such machines.

In contrast to ordinary algorithms, prefix-algorithms are self-delimiting. That is,
suppose the string p is a “description” of the string w by a Turing machine. The follow-
ing might well happen without the prefix proviso. The machine, when presented with
the input p, would first scan it from tip to tip in order to obtain its length |p| = n and
only then begin the bit-by-bit computation on p. In this case the complexity of w might
well amount to n + log2 n instead of n. This cannot happen for prefix-algorithms. By
construction the program tape is read only to the right, and the machine stops at the
last bit of p.

This motivates the replacement of the previous notion of complexity with the fol-
lowing one. If U is a universal prefix algorithm, then the (Chaitin)-complexity CU (w)

of a string w relative to U is given by

CU (w) = min{|p| : U (p,�) = w}.
By the Invariance Theorem, we can fix a universal machine U and declare C(w) =
CU (w) to be the complexity of w. Then one replaces the previous definition by:

Definition 4.6. A sequence x in �N is incompressible (or chaotic) when there is a
constant c such that

C(x(n)) ≥ n − c

for all n, where x(n) = x1x2 . . . xn.

The great technical advantage of working with prefix algorithms comes from a re-
sult in information theory called Kraft’s inequality (1949) (see Rozenberg and Salo-
maa [38, p. 164]). It asserts that every prefix-free language L over {0, 1} satisfies∑

w∈L
2−|w| ≤ 1.

A generalization of this inequality known as the Kraft-Chaitin inequality [7], [9] is
a crucial ingredient in the proof of the equivalence of the notion of incompressible
sequences and another, conceptually very different notion, that of typical sequences.
This is the topic of the next section.

5. RANDOMNESS AS TYPICALITY. Intuitively, we consider something to be
“typical” when it is unexceptional or ordinary. If the objects in question are binary
sequences, we could say that typical sequences are “featureless.” Also, we would like
the set of typical sequences to be much “bigger” than the set of nontypical ones, in
some sense. But in exactly what sense? In the context of measure theory, which of-
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fers a generalization of the notions of area and volume, a set is considered “small” or
unexceptional when it has measure zero.

One of the earliest applications of this notion was in celestial mechanics, in connec-
tion with the problem of the stability of the solar system. There, the idea was to prove
stability by showing that the set of initial conditions of the equations of motion that led
to some catastrophic event (e.g., planetary collisions or dispersion to infinity) would
be a set of measure zero. In other words, the set of “problematic” points is negligible
and has no physical significance.26 Of course, there is some arbitrariness to this notion:
what is considered negligible in one context might nonetheless be important in another
one.27

Let us return, however, to binary sequences. In the essay cited earlier, Ville observed
that the inadequacy of the Mises-Wald-Church notion of stochastic sequences was that
it is based on a single “law of randomness,” namely, the Law of Large Numbers. He
suggested that a truly random sequence should satisfy all such laws. More precisely,
a sequence is typical according to Ville if it satisfies all properties that occur with
probability one in �N; i.e., if {�α : α ∈ I } is the collection of all sets of probability
one, then x would be typical if:

x ∈
⋂
α

�α.

Formulated so simply, this cannot work. For example, let λ be the Bernoulli
(1/2, 1/2) distribution. Then λ({x}) = 0 for all x or, equivalently, λ(�N − {x}) = 1.
Therefore, ∩α�α = ∅ and there would be no typical sequences! To save the idea,
one needs to restrict in some fashion the collection of sets of probability one. This is
a familiar situation and once again the notion of algorithms or effective procedures
comes to the rescue.

In 1966 Martin-Löf (then working as a postdoc in Moscow) advanced the notion of
sets of effective measure one. Recall first the notion of a null set in �N: it is a set that
can be covered by certain elementary sets such that the cover has measure as small as
we want. The basic building blocks of the cover are the cylinder sets, �w = {x ∈ �N :
x = wy}, where w belongs to {0, 1}∗. These are the sets of all sequences with a given
prefix w. Note that in terms of the real numbers in [0, 1], each cylinder set is a dyadic
interval (0.w, 0.w + 2−|w|].

Let µ be a probability measure on �N. We say that a subset N of �N is µ-null if
and only if, for each rational number ε > 0, there is a sequence of words w0, w1, . . .

in {0, 1}∗ such that

(i) N ⊂
⋃
k≥1

�wk

and

(ii)
∑
k≥1

µ(�wk ) < ε.

A set N is said to be effectively µ-null provided there exists an algorithm (i.e., a Turing
machine) that, for each rational ε > 0 and nonnegative integer k, computes wk for
which the foregoing conditions (i) and (ii) are satisfied. A set of effective µ-measure
one is defined by complementation. Note that in the case of the Bernoulli(1/2, 1/2)-
measure λ, we have λ(�w) = 2−|w|.

26More recently, these ideas have been also used in the foundations of statistical mechanics.
27In the previous example, it is clear that planetary collisions are very important events in astronomy and

the planetary sciences.
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A probability measure µ is said to be computable when, for each positive rational
number ε and each w in {0, 1}∗, there exists a Turing machine computable function F
taking (ε, w) → F(ε, w) such that

|F(ε, w)− µ(�w)| ≤ ε.

For example, the Bernoulli(1/2, 1/2)-measure is computable, because 2−n is rational.
With these notions, Martin-Löf obtained the following result.

Theorem 5.1 (Martin-Löf). Let µ be a computable probability measure. The inter-
section of sets of effective µ-measure one is nonempty and is a set of effective µ-
measure one.

This shows that the identification of the set of random sequences with the set of typical
sequences is consistent: a sequence is Martin-Löf-random when it belongs to all sets
of effective measure one (for some computable measure).

Martin-Löf’s ideas can be interpreted in terms of the concept of an effective statis-
tical sequential test for randomness. It consists of a recursively enumerable sequence
of dyadic intervals {I n

m}n≥1 such that, for each fixed m, µ(I n
m) < 2−m = ε. To apply the

test on a sequence x means to choose a confidence level m (or ε) and check whether
or not x belongs to I n

m for some n ≥ 1. In the affirmative case, x is rejected (it fails
the test), being considered nonrandom at the level m. On the other hand, if x is not
rejected from a certain level on, then it passes (or succeeds in) the test. Therefore,
each test eliminates a certain regularity property that is considered incompatible with
the sequence being random. Hence, a sequence is said to be Martin-Löf-random if it
passes all the effective sequential tests for randomness. The above theorem amounts
to the statement that there is a universal (or maximal) sequential test that, if passed,
defines a sequence as being random.

Corollary 5.2. A computable sequence x in �N is µ-typical if and only if µ({x}) > 0.

In particular, Lebesgue-almost-every x in [0, 1] is nontypical. Although, from this
point of view, most real numbers are nontypical, it is impossible to construct a sin-
gle concrete example of such a number by algorithmic means (i.e., they are noncom-
putable).

The crowning achievement of these investigations is the following impressive result,
connecting two apparently very different notions of randomness (for a proof, see Li
and Vitányi [33] or Calude [7]).

Theorem 5.3 (Levin-Schnorr-Chaitin). A binary sequence is typical with respect to
the Bernoulli(1/2, 1/2) measure if and only if it is chaotic with respect to that distri-
bution.

The set R of Martin-Löf-random real numbers in [0, 1] is, by construction, a set of
Lebesgue-measure one. Each of its elements x is noncomputable, that is, there is no
algorithm that generates the binary digits of x . However, one can define, in the style of
classical mathematics, particular examples of such numbers. The most famous is the
so-called Chaitin’s �-number:

� =
∑

{p∈�∗:U(p,�)<∞}
2−|p|,

for a fixed universal prefix-free Turing machine U . The sum is taken over all inputs p
in �∗ for which the computation converges (U halts).
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Note that � > 0, for U halts for some input p. By Kraft’s inequality, � ≤ 1; since
U does not halt for all inputs, we have � < 1. Therefore 0 < � < 1. The number � is
called the halting probability with respect to U : � is the probability that the machine U
stops when fed an input p chosen “at random” (i.e., by tossing an honest coin).

It can be shown that � has certain curious features [38]. First of all, it is an incom-
pressible number, hence (Martin-Löf)-random.28 In spite of its being noncomputable,
� can be estimated, and it is known that 0.00106502 < � < 0.217643. Also, if the
prefix �(n) of size n is known, then we can decide all halting problems codifiable
in less than n bits. It follows that � has the following property. Let β be a formula
in some axiomatic mathematical system A, and let T M(A, β) and T M(A,¬β) be
Turing machines that check whether β or ¬β is a theorem (merely by verifying all
possible proofs in the system). If a big enough initial prefix �(n) is known, one can
decide whether β is provable, not provable, or independent in A!

How big a prefix is needed depends on the sizes of F and β, that is, on how com-
pactly expressible they are. A reasonable estimate (for humanly interesting cases) reck-
ons that some 10,000 digits would suffice. This would encompass such classical co-
nundrums as Goldbach’s conjecture and Riemann’s hypothesis. The catch is that, even
if �(n) were known, it would be computationally useless: the computation time t (n)

to find from �(n) all the halting programs of size less than n increases faster than any
computable function.

6. CONCLUSION. The notion of Martin-Löf-random sequences is mathematically
consistent and, unexpectedly, coincides with an apparently very different notion of
randomness, namely, that of incompressibility.29 Coupled with the fact that no seri-
ous flaw, analogous to the ones that surfaced in the theory of the collectives, has yet
been found, this state of affairs makes a strong argument supporting the concept of
Martin-Löf-random sequences as the best candidate for the mathematical definition of
randomness.

As observed in [17], this parallels the story leading to the proposal of the Church-
Turing thesis. By the same token, the main theoretical objections are the ones inherited
through the use of the Church-Turing thesis.30 For example, isn’t there an overempha-
sis on the concept of computability? After all, as remembered in [40, p. 316], “most
of mathematics is about noncomputable objects and even noncountable ones.” Is the
concept of randomness, founded in the concept of absence of computable regularities,
the only adequate and consistent one? In which directions, if any, should one look for
alternatives?

Even more problematic are some allegedly deep connections to randomness in the
physical world, which are advanced on the basis of the given mathematical definition.
What is not quite clear is the soundness of such questions as: “Is the universe recur-
sive/computable?” After all, computability is about algorithmic procedures that in turn
refer to a class of methods used by humans for solving certain mathematical problems,
methods that may appear in connection with physical models. Frequently a distinction
isn’t clearly drawn between the mathematical formalism used in a physical theory and
the referents the theory is supposed to investigate.31 It seems to presuppose the idea
that the “universe” can somehow be identified with a kind of big universal Turing ma-

28And according to Borel, would not be a real number at all.
29For other equivalences, see Calude [8].
30See Copeland [12] for a nice discussion of the thesis and some misunderstandings of it.
31It is analogous to saying that quantum mechanics is Hilbert space analysis instead of a theory about atoms

and molecules. Or, that classical mechanics is dynamical systems theory instead of a theory of interacting point
particles.
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chine putting out bits for us to decode. Besides being strongly anthropomorphic, this is
an extreme simplification of nature and is at odds with the pictures presented to us by
the natural sciences. Of course, this is not to say that investigation of the computability
properties of, say, the solution of certain partial differential equations describing phys-
ical processes is unimportant. The question is whether or not our description of them
as computable bears any relevance to the natural processes themselves.

Finally, what about applications? This is probably where the theory has the least to
offer, although that was not the main purpose of the investigation to begin with (how-
ever, see Li and Vitányi [33]). Consider the quest for long tables of random numbers.
These are in great demand in statistics (in conjunction with the problem of random
sampling), in computer simulations (for instance, in applications of the Monte Carlo
method), and in cryptography. It would be desirable to generate such numbers quickly,
preferably in a reproducible way, without a simultaneous overburdening of memory
resources. But these are requirements that cannot be satisfied by a “truly” random se-
quence. In fact, such sequences are noncomputable, so cannot be efficiently stored.
Nor can one generate high complexity binary strings from a small random “seed.”
Moreover, the complexity function C(x) is itself noncomputable [7], [33], therefore
one cannot algorithmically decide whether a certain string is random. One settles for
a more pragmatic principle: “if it acts randomly, it is random.” That is, one resorts
to pseudorandom bit generators [31], which are completely computable methods to
generate large “random-looking” bits. Although predictable in principle, one tries to
design them so that they display sufficient (pseudo)randomness for applications.
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