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Abstract

A name service maps a name of an individual, organization or facility into a set of labeled
properties, each of which is a string. It is the basis for resource location, mail addressing,
and authentication in a distributed computing system. The global name service described
here is meant to do this for billions of names distributed throughout the world. It
addresses the problems of high availability, large size, continuing evolution, fault
isolation and lack of global trust. The non-deterministic behavior of the service is
specified rather precisely to allow a wide range of client and server implementations.

Introduction

There are already enough names.
One must know when to stop.
Knowing when to stop averts trouble.

Tao Te Ching

The name service I am describing in this talk is intended to be the basis for resource
location, mail addressing, and authentication in a distributed computing system. The
system I have in mind is a large one, large enough to encompass all the computers in the
world and all the people who use them. Of course, the amount of communication between
most pairs of computers or people in such a system is small, just as the number of letters
or telephone calls between most pairs of people is small. But we expect the postal system
or the telephone system to handle such communication on demand, and we should expect
the same from a computing system.

A name service maps a name for an entity (an individual, organization, or facility) into a
set of labeled properties, each of which is a string. Typical properties are:

                                                
1 This paper originated as an invited talk at the 1985 Conference on Principles of Distributed Computing,
Minaki, Ontario. It was published in the proceedings of the 1986 Conference on Principles of Distributed
Computing.
2 This design was done jointly by the author, Andrew Birrell, Roger Needham and Michael Schroeder.
3 Author’s address: Systems Research Center, Digital Equipment Corporation, 130 Lytton Avenue, Palo
Alto, CA 94301.
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Password = XQE$#
Mailboxes = {Cabernet, Zinfandel}
network address = 173#4456#1655476653
distribution list = {Birrell, Needham, Schroeder}

Grapevine [1, 3] and the Xerox Clearinghouse [4] are examples of such a name service,
and they are the basis for the present design. I exclude descriptive “names” from
consideration, since I don’t know how to specify, much less implement, a service which
maps predicates into strings and meets the other requirements of a global name service.

A name service is not a general database: the set of names changes slowly, and the
properties of a given name also change slowly. Furthermore, the integrity constraints of a
useful name service are much weaker those of a database. Nor is it like a file directory
system, which must create and look up names much faster than a name service, but need
not be as large or as available. Either a database or a file system can be named by the
service, though.

The name service has its own requirements:

• Large size, to handle an essentially arbitrary number of names and serve an arbitrary
number of administrative organizations.

• Long life, during which many changes will occur in the organization of the name
space and the component that implement the service.

• High availability, because the system can’t work when the name service is broken.

• Fault isolation, so that local failures don’t cause the entire service to fail.

• Tolerance of mistrust, since a large-scale service won’t have any component which is
trusted by all the clients.

These requirements imply a hierarchical system; hierarchy is the fundamental method for
accommodating growth and isolating faults.

In addition to the functional requirements, there is a need for a precise specification of
how the service behaves, especially in the presence of faults. The designers devoted a
good deal of effort to such a specification.

The system described here was designed by Andrew Birrell, Butler Lampson, Roger
Needham, and Michael Schroeder. We talked extensively with Dave Oran and Tony
Lauck. A toy implementation has been done by William Stoye, but no real one has yet
been attempted.

The next section gives an overview of the name service, from the viewpoint first of a
client and then of an administrator. Next is an explanation of the precise nature of the
name space and the provisions for changing it, followed by informal but fairly precise
specifications for both client and administrative levels of the service. Interesting
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algorithms are sketched but not given in detail. Authentication is an important part of the
design, sketched in the next section but discussed elsewhere [2].

The name service has a complete semi-formal specification and a detailed design; it is
described informally here.

Overview

The name service supports six major abstractions, divided into two levels. At the client
level there are hierarchical names and their values, with operations for reading and
updating them, and facilities for protection and authentication. The fact that the database
is distributed and replicated is invisible at this level. At the administrative level the copies
of the database are visible, together with the mechanisms for locating copies and keeping
them synchronized.

Client level

The client sees a structure much like a Unix file system. There is a tree of directories (see
figure 1), each with a unique directory identifier (DI) and a name by which it can be
reached from its parent. The arcs of the tree are called directory references (DRs). A DR
is the value of the name; it consists simply of the DI for the child directory. Thus a
directory can be named relative to a root by a path name called its full name (FN). In the
figure, the lowest directory is named DEC/SRC relative to the root labeled ANSI. We write
this ANSI/DEC/SRC, where the italic ANSI stands for the directory identifier of the root.
The implications of this scheme are discussed below, in the section on the name space.

ANSI

DEC

Finance SRC

Figure 1: A directory tree
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The value of a name can also be a link, which is simply another full name for a directory.
Thus, if the value of ANSI/DEC/SRC/TJW is the link ANSI/IBM/TJW, then
ANSI/DEC/SRC/TJW/CJS has the same value as ANSI/IBM/TJW/CJS.

A directory is not simply a mapping from simple names to values. Instead, it contains a
tree of values (see figure 2). An arc of the tree carries a label (L), which is just a string,
written next to the arc in the figure. A node carries a time-stamp (TS), represented by a
number in the figure, and a mark which is either present or absent. Absent nodes are
struck through in the figure. A path through the tree is defined by a sequence of labels
(L*); we write this sequence just like a full name, e.g., Lampson/Password.

For the value of the path, there are three cases:

• If the path l*/l ends in a leaf that is an only child, we say that l is the value of l*. This
rule applies to the path Lampson/Password/XGZQ#$3, and hence we say that XGZQ#$3
is the value of Lampson/Password.

• If the path l*/li ends in a leaf that is not an only child, and its siblings are labeled l1...
ln, we say that the set {l1... ln} is the value of l*. For example, {Zin, Cab, Ries,
Pinot} is the value of Lampson/Mailboxes.

• If the path l* does not end in a leaf, we say that the sub-tree rooted in the node where
it ends is the value of l*. For example, the value of Lampson is the subtree rooted in
the node with time-stamp 10.

SRC

Lampson

Figure 2: The values in a directory

10 11 12

Birrell Schroeder

Password Mailboxes

14 13

17 17 191922

Pinot
XGZQ#$

Zin

Cab Ries
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An update to a directory makes the node at the end of a given path present or absent. The
update is time-stamped, and a later time-stamp takes precedence over an earlier one with
the same path. The subtleties of this scheme are discussed later; its purpose is to allow the
tree to be updated concurrently from a number of places without any prior
synchronization.

Access control is based on the notion of a principal, which is an entity that can be
authenticated by its knowledge of some encryption key (which acts as its password). A
principal is identified either by a full name or, in case the root of the full name is not
trusted, by a relative name, a path through the directory tree starting at the target directory
and using ‘..’ to denote the parent; for example, in the Finance directory the principal
ANSI/DEC/SRC/Lampson can also be identified by the relative name ../SRC/Lampson.
Each directory has an access control function which maps a principal and a path into a set
of rights drawn from {read, write, test}. Each of the operations provided by the name
service requires the principal that invokes it to have certain rights to the nodes involved in
the operation.

For the convenience of the users, the access control function is defined by a set of triples
(principal pattern, path pattern, rights); in the directory of figure 2 the triple (ANSI/DEC/*,
Lampson/*, {read}) gives every principal starting with ANSI/DEC read rights to the
subtree which is the value of Lampson. The triple (../*, Lampson/*, {read}) has the
same effect, but the authentication of the principal must come from the parent directory.

Authentication is based on the use of encryption to provide a secure channel between the
caller of an operation and its implementor. A directory has an authentication function af,
which is a mapping from keys to principals; it accepts a message encrypted with key k as
coming from principal af(k). Each directory has a few values for which af is defined by
some external means (such as a courier). In particular, there is a secure channel for each
parentchild link; the parent’s af maps this channel’s key to the child’s name, and the
child’s af maps it to ‘..’.

The authentication function can be extended by a certificate, a message encrypted with
key k’ which says, “Key k authenticates the principal whose name is N relative to me.”
This allows af(k) to be defined as af(k’)/N. For example, suppose ANSI/DEC sends the SRC
directory a certificate that k authenticates Finance/Wright over the secure channel from
DEC to SRC, then SRC’s af can be extended with (k, ../Finance/Wright).

A sequence of certificates can establish a secure channel between any two directories; the
relative names to which the directories map the channel will depend on what other
directories participated in setting it up. The details of this scheme, together with
arguments for its soundness, can be found in [2].
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Administrative level

The client sees a single name service and is not concerned with the actual machines on
which it is implemented or the replication of the database that makes it reliable. The
administrator allocates resources to the implementation of the service and reconfigures it
to deal with long term failures. Instead of a single directory, she sees a set of directory
copies (DC), each one stored on a different server (S) machine. Figure 3 shows this
situation for the directory DEC/SRC, which is stored on four servers named alpha, beta,
gamma, and delta. A directory reference (DR) now includes not just the DI of the
directory, but also a list of the servers that store its DCs. A lookup can try one or more of
the servers to find a copy from which to read.

The copies are kept approximately but not exactly the same. The figure shows four
updates to SRC, with timestamps 10, 11, 12 and 14. The copy on delta is current to time
12, as indicated by the italic 12 under it. This is called its lastSweep time. The others have
different sets of updates, but all have lastSweep = 10. Each copy also has a nextTS value
(not shown), the next time-stamp it will assign to a new update; this value can only
increase.

An update originates at one DC, and is initially recorded there. The basic method for
spreading updates to all the copies is a sweep operation, which visits every DC, collects a
complete set of updates, and then writes this set back to every DC. The sweep has a time-
stamp sweepTS. Before it reads from a DC it increases that DC’s nextTS to sweepTS; this
ensures that the sweep collects all updates earlier than sweepTS. After it writes back to a
DC, it sets that DC’s lastSweep to sweepTS. Figure 4 shows the state of SRC after a sweep
at time 14.

DEC

Figure 3: Directory copies with different contents

alpha

SRC

beta gamma delta

10
Lampson 10
Birrell 12

10
Lampson 10
Schroeder 14

10

Lampson 10

12
Lampson 10
Needham 11
Birrell 12

Birrell 12

Needham 11
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In order to speed up the spreading of updates, any DC may send some updates to any
other DC in a message. Figure 3 shows the updates for Birrell and Needham being sent
to server beta. I expect that most updates will be distributed in messages, but it is
extremely difficult to make this method fully reliable. The sweep, on the other hand, is
quite easy to implement reliably.

A sweep’s major problem is to obtain the set of DCs reliably. The set of servers in the DR
stored in the parent is not suitable, because it is too difficult to ensure that the sweep gets
a complete set if the directory’s parent or the set of DCs is changing during the sweep.
Instead, all the DCs are linked into a ring, shown by the fat arrows in figure 5. Each
arrow represents the name of the server to which it points. The sweep starts at any DC
and follows the arrows; if it eventually reaches the starting point, then it has found a
complete set of DCs. Of course, this operation need not be done sequentially; given a hint
about the contents of the set, say from the parent DR, the sweep can visit all the DCs and

DEC

Figure 4: The directory of figure 3 after a sweep
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SRC

beta gamma delta

14
Lampson 10
Needham 11
Birrell 12
Schroeder 14

14
Lampson 10
Needham 11
Birrell 12
Schroeder 14

14
Lampson 10
Needham 11
Birrell 12
Schroeder 14

14
Lampson 10
Needham 11
Birrell 12
Schroeder 14

DEC

Figure 5: The ring used for a sweep
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read out the ring pointers in parallel. DCs can be added or removed by straightforward
splicing of the ring.

If a server fails permanently, however (say it gets blown up), or if the set of servers is
partitioned by a network failure that lasts for a long time, the ring must be reformed. In
the process, an update will be lost if it originated in a server that is not in the new ring
and has not been distributed. Reforming the ring is done by starting a new epoch for the
directory and building a new ring from scratch, using the DR or information provided by
the administrator about which servers should be included. An epoch is identified by a
time-stamp, and the most recent epoch that has ever had a complete ring is the one that
defines the contents of the directory. Once the new epoch’s ring has been successfully
completed, the ring pointers for older epochs can be removed. Since starting a new epoch
may change the database, it is never done automatically, but must be controlled by an
administrator.

The servers are themselves named in the data base, by server names (SN) that are simply
full names. The value of a SN is a unique server identifier (SI) and the network address of
the server.

The name space

This section deals with the structure of names, provisions for expanding the name space
and changing its structure without destroying the usefulness of old names, and ways of
safely caching the result of a name lookup.

Names

A name has two parts: the full name (FN) of a directory, and the name of an entity
registered in that directory. For example, in the context of figures 1 and 2
ANSI/DEC/SRC/Lampson is a name for Lampson in the directory ANSI/DEC/SRC. This
name has a Password property with the value XGZQ#$, and a Mailboxes property with the
value {Zin, Cab, Ries, Pinot}. An arbitrary node has a two part name; for example,
(ANSI/DEC/SRC, Lampson/Mailboxes). This division reflects the radically different
implementation of the two parts; it also makes it simple to represent a DR as a value
within its containing directory; thus (ANSI/DEC, SRC/DR) names the DR for SRC in the
ANSI/DEC directory.

The value part is expected to be short, since the entity being named is distinguished by its
first component, and each entity has only a few relatively simple properties (though some
distribution lists might have hundreds of members). An entire directory should contain no
more than a few hundred names and a few thousand nodes. Furthermore, a directory copy
is stored on a single server; all of it can be accessed under a single lock if necessary, and
there is no possibility of losing track of part of it.

In contrast, the directory tree may be very large. It can only be modified using special
operations to add or delete a leaf node, or move a subtree; these operations deal with the
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multiple copies which represent the directory, the multiple servers involved, and the need
to avoid losing a directory or forming a cycle in the tree. Because the tree is large, it will
have to evolve gradually over a long time. Finally, the unit of replication is the directory.

Growth

The basic mechanism for growth of the name space is its hierarchical structure. Each
directory is a context within which names can be generated independently of what is
going on in any other directory. Thus names with the prefix ANSI/DEC, for example
ANSI/DEC/SRC or ANSI/DEC/Finance, can be assigned without any concern for what
names exist with the prefix ANSI/IBM, such as ANSI/IBM/TJW or ANSI/IBM/Finance.
Each directory can have its own administrator, and they do not have to coordinate their
actions. Since new directory names can be created as easily as new entity names, the
organization of the name space can readily be made broader (by adding
ANSI/DEC/Personnel or ANSI/DEC/Legal) or deeper (with ANSI/DEC/SRC/Finance or
ANSI/DEC/SRC/Theory).

Growth by combining existing name services, each with its own root, is a little trickier.
The basic idea is obvious: add a new root, making the existing roots its children. Figure 6
illustrates the creation of a new ANSI root above DEC and IBM. Now the name
ANSI/DEC/SRC/Lampson is a synonym for DEC/SRC/Lampson. Both these names appear
at the bottom of the figure; the directory identifiers (beginning with # signs) are written
explicitly.

Note the difference between a full name and a file name in a hierarchical file system. A
file system name is normally relative to the working directory (part of the state of the
running process), or to the root of the file system (either a constant, or also part of the
process state as in Unix, although it is unusual to change the root from the default). A full
name begins with the DI of the root directory for that name. For example, the meaning of
the name #311/SRC/Finance is to start with the unique directory that has DI #311, look
up SRC there to obtain another directory, and look up Finance there to obtain yet a third

DEC

SRC

Figure 6: Growing the name space by combining two trees under a new root
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#311 = #999/DEC
#552 = #999/IBM
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directory. Thus the DIs act as names in an imaginary super-root which has all the
directories as its children; an FN behaves like a file system name relative to the superroot.

There are two obvious questions: how do users type FNs, and how can a directory be
found from its DI among millions of directories scattered all over the world?

The first question has the same answer as it does in a file system: a user will have a
working root, which is prefixed to any name she types. Many variations are possible. For
example, as in Unix the user could have a working root which is prefixed to typed names
that start with / and a working directory which is prefixed to typed names that do not. Of
course the user is also free to type an initial DI explicitly, or to define named links to
various roots in his working directory.

The second question is more subtle. At any time, an instance of the name service has a
single root, and there are data structures maintained by the administrative level that allow
a copy of the root to be found from any server; these are discussed later. Taken without
qualification, this means that only FNs beginning with the root’s DI can be looked up,
which is fine when the root is created first and growth occurs at the leaves. To handle the
growth by combination shown in figure 6, the root keeps an ersatz super-root, in the form
of a table of well-known directories that maps certain DIs into links which are FNs
relative to the root. Thus in the figure the well-known DIs in ANSI (shown in gray) are
#311 and #552, the DIs for DEC and IBM. Now when a lookup reaches the root, it can
consult the well-known table and replace the FN’s DI with a path that starts at the root
itself. Thus #311 is replaced by #999/DEC, and hence #311/SRC/Lampson becomes
#999/DEC/SRC/Lampson, which can be looked up starting at the ANSI root. When
combining name services, it is prudent to make the old roots well-known in the new root,
so that old names can still be looked up.

Restructuring

Sometimes what is wanted is not growth but restructuring. Suppose that DEC buys IBM.
The subtree rooted in the IBM directory should be moved under the DEC directory, as
shown in figure 7. Moving a subtree is the only restructuring operation; as long as it
doesn’t form a cycle (not allowed), it preserves the tree structure of the service.

The obvious problem with this move is that all the names that begin ANSI/IBM no longer
work, since IBM is no longer a child of ANSI. The solution is familiar from the telephone
system: when a number changes, a call to the old number elicits the response, “The
number you have reached has been changed. The new number is....” Similarly, an entry in
ANSI for IBM, with the link ANSI/DEC/IBM as its value, gives names beginning ANSI/IBM

the same meaning they had before the takeover.

Caching

Name lookup is not likely to be especially cheap. Indeed, if the servers that store the
name or its parent directories are far away in the network, lookup may be quite expensive.
Hence it is very desirable for a client to be able to cache the result of a lookup for a while,
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rather than repeating it every time the value is needed. Since it is impractical for the
service to keep track of clients that are doing this and notify them when there is a change,
caching must be paid for either by enforcing a slow rate of change on the naming
database, or by tolerating some inaccuracy in the cached information. The latter requires
no work from the service, but the former does.

The enforcement mechanism is an expiration time (TX) on entries in the data base, and in
particular on parent-child arcs in the directory tree and on links. The rule is: an arc or link
may not be changed until its TX has expired, except that an arc may be deleted by a
subtree move if it is replaced by a link to the moved subtree; e.g., see figure 7. With this
restriction, the result of a directory lookup can be safely cached until the minimum TX of
any arc or link that was followed. In figure 8, for example, the result of looking up
ANSI/DEC/SRC is valid until 15 Sept 1985, which is the minimum of the two TX values
encountered.

One important client for caching is the name service itself: directories are expected to
cache their names from the root, so that a lookup which encounters a server storing the
SRC directory need not find one that stores ANSI in order to look up ANSI/DEC/SRC.
Without this mechanism, access to ANSI might well become a bottleneck.

Figure 7: Restructuring a name space by moving the IBM node

ANSI

DEC

SRC

#311

#783

IBM

TJW

#552

#935

#999
#311 = #999/DEC
#552 = #999/IBM

ANSI

DEC

SRC

#311

#783

IBM

TJW

#552

#935

#999
#311 = #999/DEC
#552 = #999/IBM

IBM

#999/DEC/IBM

Figure 8: Using expiration times to validate caches
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valid until 1 Oct 85
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valid until 15 Sep 85
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Authentication is another client of caching, since “key authenticates principal” is the
result of a name lookup.

The name service interface

The following table gives the procedures in the interface to the name service. I have
included it to give a feeling for the complexity of the system when viewed from the
outside; many programming details are missing.

As you can see, the interface is based on remote procedure calls. It is organized according
to four main abstractions: values and directories at the client level, and directory copies
and servers at the administrative level. Procedures that create a directory have a server
name argument; although this isn’t logically necessary, allowing the service to choose the
server would be impractical.

A few types are used in the table as abbreviations. A path is a sequence of labels on arcs
in the value tree. A TSpath is a sequence of (label, time-stamp) pairs. A value designator
(VD) is a pair (full name, path) that designates a node in the value tree. A tree is either a
mark (present or absent), or a set of (label, tree) pairs; it is a representation of a value tree
without the time-stamps.

All these procedures can also return various errors, such as “value not present.”

Values and updates
Snapshot VD → (mark, TSpath) give status and path
DoUpdates (VD, tree) → time-stamp add the updates
Enumerate VD → set of labels give all VD’s children
GetValue VD → tree give all of VD’s value
SetValue (VD, tree) → time-stamp replace VD’s value

Directories
FirstRoot server address → DI
NewRoot (SN, FN, name) → DI old root FN, called name in

new root
NewD (SN, FN) → DI named FN
MoveSubtree (VD, FN) → () give VD name FN

Directory copies
NewDC (SN, FN) → () copy of FN at SN
RemoveDC (SN, FN) → ()
Sweep (FN, SN) → time-stamp start at SN
NewEpoch (DI, set of SN) → epoch
Baptise (FN, epoch, SN) → () add FN on SN to ring
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Servers
NewServer () → server address initialize a server
RemoveS SN → ()
SetInSN (FN, bool) → () can FN point to servers
SetUpOn (SN, SN) → () turn on server
CheckS (server address, SN) → () verify server invariants

Specifications

The name service is specified by a collection of predicates. There are two kinds:

• Invariants that hold between the execution of any two atomic actions.

• Post-conditions that specify what is true after successful execution of a procedure
call.

The pre-conditions are all true, since the service must work even if its clients are not
well-behaved. Since this is a concurrent system, a post-condition usually relates input and
output values of the procedure, or is true once the procedure has returned and forever
thereafter.

The model of computation is arbitrary interleaving of atomic actions in separate
processes. Atomic actions are the primitive computing steps. They take place entirely on
one server, where the atomicity can be maintained by a local lock.

A program in the system may refer to any of the variables in the server on which it is
running. It may also make remote procedure calls to other servers. The design is such that
it is never necessary to hold a lock while making such a call.

A predicate may refer to any of the variables in the system, and also to auxiliary
variables which are not part of the program. The most important auxiliary variable is the
database (DB), which is a function DI → directory that defines the current contents of the
database. Since this information is distributed over all the servers, there is no way for a
program to refer to it directly. DB could only be determined by stopping the system and
reading it out, and there is no way to do this. However, the specification defines precisely
how DB changes as a result of procedure calls on the service, and it also defines how the
results of procedure calls are related to DB. These definitions are completely precise, and
they are also intuitive in the sense that DB corresponds to a natural intuition about what
the database ought to be.

Another auxiliary variable used in the predicates is root, the DI of the root directory.
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Values and updates

As we saw earlier, a value is a tree with labeled arcs and time-stamped nodes; a leaf node
in the tree is marked present or absent. The left side of figure 9 illustrates.

A value v is modified by an update operation which

• names a node by giving a path p in the tree, including the time-stamp at the end of
each labeled arc (this is the TSpath defined in the previous section), and

• says whether to make that node present or absent.

This update modifies the value in the following way.

 Find the longest prefix of p for which v has arcs and nodes with labels and time-
stamps matching p; this prefix defines a node (and hence a subtree) v’.

 If the prefix is all of p, then if the update says present do nothing; if it says absent,
replace v’ with an absent leaf node.

 Otherwise consider the next element of p; call it (l, ts).

 If there is an arc labeled l from v’ to a node with time-stamp greater than ts, do
nothing.

 Otherwise, remove any subtree of v’ reached by an arc labeled l, and add the
subtree defined by the rest of p.

SRC

Birrell

Figure 9: A directory value determined by a set of updates
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This complicated definition serves to make the order of updates immaterial to the result.
Why is this important?

A value is determined by the sequence of update operations that have been applied to an
initial empty value. An update can be thought of as a function that takes one value into
another. Suppose the update functions have the following properties:

• Total: it always makes sense to apply an update function.

• Commutative: the order in which two updates are applied does not affect the result.

• Idempotent: applying the same update twice has the same effect as applying it once.

Then it follows that the set of updates that have been applied uniquely defines the state of
the value.

It can be shown that the updates on values defined earlier are total, commutative and
idempotent. Hence a set of updates uniquely defines a value. This observation is the basis
of the concurrency control scheme, as explained in the next subsection. The right side of
figure 9 gives one set of updates that will produce the value on the left.

The presence of the time-stamps in p ensures that the update is modifying the value that
the client intended. This is significant when two clients concurrently try to create the
same name. The two updates will have different time-stamps, and the earlier one will
lose. The fact that later modifications, e.g. to set the password, include the creation time-
stamp ensures that those made by the earlier client will also lose. Without the time-
stamps in p there would be no way to tell them apart, and the final value might be a
mixture of the two sets of updates.

Directories (D)

The main post-condition for the value of a directory depends on the property of value
updates established above. It makes precise the notion that the result of a name lookup
depends on which updates have reached the directory copy being read.

(D1) A read operation (Snapshot, Enumerate, or GetValue) on a directory d with
identifier d.di returns a result determined by the state of d after some set S of updates
which is a subset of the updates in DB(d.di). S includes:

• All the updates with a time-stamp less than d.lastSweep, the time of the last
completed sweep of d.

• An arbitrary subset of the updates with a time-stamp greater than d.lastSweep.

This is a fairly weak post-condition, since S is chosen non-deterministically; one might
well ask why it isn’t stronger. The reason is that it is sufficient for the needs of a name
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service client, allows both read and update operations even if only one copy of the
directory is accessible, and admits of a simple and robust implementation.

In addition to this condition, there are the obvious postconditions on the update
operations: that they modify DB appropriately.

The other directory predicates have to do with the tree structure. The next one gives a
condition under which looking up a FN is guaranteed to succeed.

(D2) Looking up the FN di/n1/.../nk yields a directory if for the entire duration of the
lookup operation

• di is the root, and each nj is defined in the directory di/n1/.../nj-1 and always yields the
directory reference drj (in spite of the non-determinism of (D1)), or

• di is in the root’s well-known table with value di’/n1’/.../nl’, and di’/n1’/.../nl’/n1/.../nk

satisfies the conditions of (D2).

Of course a lookup can also succeed if some of the prefixes yield links, or if the directory
structure is changing during the lookup, but this is the fundamental rule.

There are two invariants to ensure that the tree structure of the directories remains well-
formed. They are based on the observation that a collection of nodes forms a tree if every
node (except for one called the root) has a single back-reference (BR) to another node,
provided the backreferences form no cycles. The BRs are the child-parent arcs in this
tree. We therefore take the BRs as the primary structure defining the tree, and view the
DRs as secondary. Figure 10 illustrates. Thus MoveSubtree simply changes the BR, and
then adjusts the DR to agree.

(D3) The D’s defined in DB form a tree rooted in root whose arcs are DRs that are the
reverse of the BR backpointers.

(D4) Each DR is pointed to by a BR with a longer TX.

Figure 10: Back-references in the directory tree
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Note that because of (D1) the tree you see by doing lookups can shift around if the BRs
change during the lookups, or faster than sweeps can keep up.

Actually (D3) is a bit oversimplified. Since MoveSubtree cannot be atomic, each
directory has a set of BRs; MoveSubtree adds the new parent to the set, adjusts the DR,
and finally removes the old parent. (D3) should say that there is some BR in each set
which satisfies the predicate above.

In addition to these invariants, there are the obvious post-conditions on the procedures
that modify the tree: NewRoot establishes a new value for root, and so forth.

Directory copies (DC)

The actual implementation of values and directories is based on directory copies stored in
servers, as described earlier. The main invariant relates the contents of the copies to the
value of DB.

(DC1) The database value of a directory DB(di), is equal to the union of the updates in all
the DCs for di, and each DC has at least all the updates with timestamps earlier than its
lastSweep.

From this it is easy to deduce that reading from any copy satisfies (D1). It is also not hard
to show that the sweep operation, which increases lastSweep, maintains this invariant.

There are no new invariants for the tree. The intended implementation of procedures that
change the tree is somewhat subtle, however. Since these procedures all involve changes
at more than one server, they cannot be implemented atomically. Instead, each procedure
makes an atomic change at one server, and then a cleanup procedure propagates the
consequences implied by this change to the other servers involved. If some server crashes
during this process, the cleanup procedure restarts. It is constructed in such a way that it
maintains the invariants, and when it finally completes successfully it has completed the
treechanging operation, if that is possible. The D invariants take account of the
intermediate states during cleanup by allowing the back-reference to be a set, as the
previous subsection points out.

There are obvious post-conditions for the procedures that add and subtract directory
copies, and for the Sweep procedure (it leaves all the lastSweep values at least as late as
the time-stamp that it returns).

Two invariants govern the epoch mechanism.

(DC2) There is always at least one complete ring in the set of DCs for a directory.

(DC3) There are never two complete non-intersecting rings.

The latter condition is essential to ensure that a sweep cannot complete without seeing all
the updates. However, when an administrator invokes NewEpoch to construct a new ring,
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(DC3) can be broken if she specifies a set of servers disjoint from those that contain an
earlier ring. This could happen, for example, if a network partition separates the servers
for a directory into two groups that cannot communicate. There doesn’t seem to be any
way to prevent this without unacceptably restricting the ability of administrators to cope
with disasters. Hence, NewEpoch is the exception to the rule that name service interface
procedures do not have pre-conditions.

Servers (S)

The invariants for servers arise from the fact that servers are identified in directory
references by server names (SN), which are themselves name service names. This is very
convenient, since it allows the network address of a server to be maintained using the
mechanisms of the name service itself. However, it introduces the unpleasant possibility
that the process of looking up a server name will result in an infinite loop: a directory
needed to look up the server name may be stored only on servers whose names include
that directory.

For an example, look at figure 11, ignoring the fat and gray arrows for the moment.
Suppose that the DEC directory is stored only on the servers ANSI/DEC/alpha and
ANSI/DEC/beta. Then it will be impossible to look up these server names, since in trying
to get from ANSI to ANSI/DEC in order to look up alpha and beta, we must look up
either ANSI/DEC/alpha or ANSI/DEC/beta; this leads to a loop.

The invariants that prevent this situation depend on a Boolean inSN in each directory. A
directory cannot be part of a server name unless its inSN is true.

ANSI

Figure 11: Distribution of directories among servers to satisfy the server invariants
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(S1) Every directory d on a direct path from root to an entry that stores a server address
has d.inSN = true.

(S2) If d.inSN = true, then either d is the root, or a copy of d is stored on a server with a
name shorter than any direct name of d. (This copy will be accessible without using d
itself to look up its server name.)

The fat arrows in figure 11 show a placement of directories on servers satisfying (S1-2).
Note that each directory with inSN true has a fat arrow entering from above.

This is not the whole story for servers, however. The model for client use of the name
service is that the client must locate a server using some lower-level resource location
facility provided by the network; Ethernet broadcast is an obvious example. From that
point, however, the service should ensure that the client can do any operations that are
authorized. Since some operations require access to a copy of the root, this means that it
must be possible to locate a copy of the root from any server. To ensure this, each server
that doesn’t store the root already has an up pointer to another server that is closer to the
root.

(S3) Every server s either stores the root, or s.up is a shorter name of another server, and s
stores a copy of the directory for s.up.

The final clause ensures that we can go from the server name in the up pointer to the
actual address of the server. (D2) ensures that following up pointers will terminate. The
gray arrows in figure 11 show a possible set of up pointers. The rising fat arrows are the
ones required by the final clause of (S3).

Conclusion

I have informally described a design for a global name service. Its most interesting
aspects are the provisions for both stability and growth of the name space, the high
availability allowed by the design, the precise specification of the non-deterministic
lookup semantics, the ability to name servers using the service itself, and the methods for
authentication without global trust.
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