
Security Considerations for Peer-to-Peer Distributed Hash Tables

Emil Sit and Robert Morris
Laboratory for Computer Science, MIT
{sit,rtm }@lcs.mit.edu

Abstract
Recent peer-to-peer research has focused on provid-
ing efficient hash lookup systems that can be used
to build more complex systems. These systems have
good properties when their algorithms are executed
correctly but have not generally considered how to
handle misbehaving nodes. This paper looks at what
sorts of security problems are inherent in large peer-
to-peer systems based on distributed hash lookup
systems. We examine the types of problems that such
systems might face, drawing examples from existing
systems, and propose some design principles for de-
tecting and preventing these problems.

1 Introduction
A number of recent systems are built on top of peer-
to-peer distributed hash lookup systems [5, 6, 9, 10].
Lookups for keys are performed by routing queries
through a series of nodes; each of these nodes uses a
local routing table to forward the query towards the
node that is ultimately responsible for the key. These
systems can be used to store data, for example, as
a distributed hash table or file system [1, 7]. Other
projects take advantage of other aspects of the lookup
system, such as the properties of lookup routing [8].

Unfortunately, the architecture of many of these
systems assumes that the nodes involved can be
trusted. In an isolated network, such as inside a cor-
porate firewall, the assumption of trust may be justi-
fied. On an open network, such as the Internet, it may
still be possible to exclude untrusted nodes with the
help of a central certificate-granting authority; this
solution is proposed by Pastry [6]. However, there
are many situations in which it is not desirable to
constrain the membership of a peer-to-peer system.
In these situations, the system must be able to oper-
ate even though some participants are malicious.

One class of attacks on distributed hash tables
causes the system to return incorrect data to the ap-
plication. Fortunately, the correctness and authen-
ticity of data can be addressed using cryptographic
techniques, such as self-certifying path names [3].
These techniques allow the system to detect and ig-
nore non-authentic data.

This paper focuses on the remaining attacks —
those that threaten the liveness of the system, by pre-
venting participants from finding data. The core of
the paper is a series of examples of particular weak-
nesses in existing distributed hash algorithms. The
paper discusses potential defenses for some of these
problems, and derives from them a set of general de-
sign principles, summarized in Table 1. Overall these
principles are driven by the fact that any informa-
tion obtained over the network can not be trusted and
must be verified.

2 Background
Typical distributed hash tables consist of a storage
API layered on top of a lookup protocol. Lookup
protocols have a few basic components:

1. a key identifier space,
2. a node identifier space,
3. rules for associating keys to particular nodes,
4. per-node routing tables that refer to other nodes,

and
5. rules for updating routing tables as nodes join

and fail.
The lookup protocol maps a desired key identifier to
the IP address of the node responsible for that key. A
storage protocol layered on top of the lookup proto-
col then takes care of storing, replicating, caching,
retrieving, and authenticating the data. CAN [5],
Chord [9] and Pastry [6] all fit into this general
framework.

1



Define verifiable system invariants (and verify them!)
Allow the querier to observe lookup progress.
Assign keys to nodes in a verifiable way.
Server selection in routing may be abused.
Cross-check routing tables using random queries.
Avoid single points of responsibility.

Table 1: Design Principles

Routing in the lookup is handled by defining a dis-
tance function on the identifier space so that distance
can be measured between the current node and the
desired key; the responsible node is defined to be the
node closest to the key.

Lookup protocols typically have an invariant that
must be maintained in order to guarantee that data
can be found. For example, the Chord system ar-
ranges nodes in a one-dimensional (but circular)
identifier space; the required invariant is that every
node knows the node that immediately follows it in
the identifier space. If an attacker could break this
invariant, Chord would not be able to look up keys
correctly.

Similarly, the storage layer will also maintain
some invariants in order to be sure that each piece of
data is available. In the case of DHash [1], a storage
API layered on Chord used by CFS, there are two
important invariants. First, it must ensure that the
node that Chord believes is responsible for a key ac-
tually stores the data associated with that key. Since
nodes can fail, it is also important that DHash main-
tain replicas of each piece of data, and that those
replicas be at predictable nodes. An attacker could
potentially target either of these invariants.

3 Adversary Model
The adversaries that we consider in this paper are
participants in a distributed hash lookup system that
do not follow the protocol correctly. Instead, they
seek to mislead legitimate nodes by providing them
with false information.

We assume that a malicious node is able to gener-
ate packets with arbitrary contents (including forged
source IP addresses), but that a node is only able to
examine packets addressed to itself. That is, mali-
cious nodes arenot able to overhear or modify com-
munication between other nodes. The fact that a ma-

licious node can only receive packets addressed to
its own IP address means that an IP address can be
used as a weak form of node identity; if a node re-
ceives a packet from an IP address, it can verify that
the packet’s sender owns the address by sending a
request for confirmation to that address. We also
consider malicious nodes that conspire together, but
where each one is limited as above. This allows an
adversary to gather additional data and act more de-
viously by providing false but “confirmable” infor-
mation.

The rest of the paper will examine the ways in
which malicious nodes can use these abilities to sub-
vert the system.

4 Attacks and Defenses
This section is organized into attacks against the
routing, attacks against the data storage system, and
finally some general considerations.

The first line of defense for any attack is detection.
Many attacks can be detected by the node being at-
tacked because they involve violating invariants or
procedure contracts. However, it is less clear what
to do once an attack has been detected. A node may
genuinely be malicious, or it may have failed to de-
tect that it was being tricked. Thus, our discussion
focuses on methods to detect and possibly correct in-
consistent information. We will see that achieving
verifiability underlies all of our detection techniques.

4.1 Routing Attacks

The routing portion of a lookup protocol involves
maintaining routing tables, then dispatching requests
to the nodes in the routing table. It is critical that
routing is correct in a distributed hash table. How-
ever, there is considerable room for an adversary to
play in existing systems. These attacks can be de-
tected if the systemdefines verifiable system invari-
ants (and verifies them).When invariants fail, the
system must have a recovery mechanism.

Incorrect Lookup Routing An individual mali-
cious node could forward lookups to an incorrect or
non-existent node. Since the malicious node would
be participating in the routing update system in a
normal way, it would appear to be alive, and would
not ordinarily be removed from the routing tables
of other nodes. Thus re-transmissions of the mis-

2



directed lookups would also be sent to the malicious
node.

Fortunately, blatantly incorrect forwarding can of-
ten be easily detected. At each hop, the querier
knows that the lookup is supposed to get “closer” to
the key identifier. The querier should check for this
so that this attack can be detected. If such an attack
is detected, the querier might recover by backtrack-
ing to the last good hop and asking for an alternative
step that offers less progress.

In order for the querier to be able to perform this
check, however, each step of progress must be vis-
ible to the querier. For example, CAN proposes an
optimization where each node keeps track of the net-
work RTTs to neighbor nodes and forwards to the
neighbor with the best ratio of progress to RTT. This
implies that queries are generally forwarded without
interacting with the querier. Thus in CAN, a querier
simply can not verify forward progress. One should
allow the querier to observe lookup progress.

A malicious node might also simply declare (in-
correctly) that a random node is the node responsi-
ble for a key. Since the querying node might be far
away in the identifier space, it might not know that
this node is, in fact, not the closest node. This could
cause a key to be stored on an incorrect node or pre-
vent the key from being found. This can be fixed
with two steps.

First, the querier should ensure that the destination
itself agrees that it is a correct termination point for
the query. In Chord, the predecessor returns the ad-
dress of the query endpoint (the “successor”) instead
of the endpoint itself, making this attack possible —
a malicious node can cause the query to undershoot
the correct successor. This can cause DHash to vi-
olate its storage location invariant. However, if the
node that is referred to is good, then it can see that it
should not be responsible for this key and can raise
an error.

Second, the system shouldassign keys to nodes in
a verifiable way.In particular, in some systems, keys
are assigned to the node that is closest to them in the
identifier space. Thus in order to assign keys to nodes
verifiably, it is sufficient to derive node identifiers in
a verifiable way. Contrast this to CAN, which allows
any node to specify its own identity. This makes it
impossible for another node to verify that a node is

validly claiming responsibility for a key. Some sys-
tems, like Chord, make an effort to defend against
this by basing a node’s identifier on a cryptographic
hash of its IP address and port.1 Since this is needed
to contact the node, it is easy to tell if one is speaking
to the correct node.

Systems may want to consider deriving long-term
identities based on public keys. This has perfor-
mance penalties due to the cost of signatures, but
would allow systems to have faith on the origin of
messages and the validity of their contents. That is,
public keys would facilitate the verifiability of the
system. In particular, a certificate with a node’s pub-
lic key and address can be used by new nodes to
safely join the system.

Incorrect Routing Updates Since each node in a
lookup system builds its routing table by consult-
ing other nodes, a malicious node could corrupt the
routing tables of other nodes by sending them incor-
rect updates. The effect of these updates would be
to cause innocent nodes to misdirect queries to in-
appropriate nodes, or to non-existent nodes. How-
ever, if the system knows that correct routing updates
have certain requirements, these can be verified. For
example, Pastry updates require that each table en-
try has a correct prefix. Blatantly incorrect updates
can be easily identified and dropped. Other updates
should only be incorporated into a node’s routing ta-
ble after it has verified itself that the remote node is
reachable.

A more subtle attack would be to take advantage
of systems that allow nodes to choose between multi-
ple correct routing entries. For example, CAN’s RTT
optimization allows precisely this in order to mini-
mize latency. A malicious node can abuse this flex-
ibility and provide nodes that are undesirable. For
example, it might choose an unreliable node, one
with high latency, or even a fellow malicious node.
While this may not affect strict correctness of the
protocol, it may impact applications that may wish
to use the underlying lookup system to find nodes
satisfying certain criteria. For example, the Tarzan
anonymizing network [2] proposes the use of Chord
as a way of discovering random nodes to use in dy-

1The hash actually also includes a virtual node identifier,
which will be relevant in Section 4.2

3



namic anonymizing tunnels. Any flexibility in Chord
might allow an adversary to bias the nodes chosen,
compromising the design goals of Tarzan. Applica-
tions should be aware thatserver selection in routing
may be abused.

Partition In order to bootstrap, a new node par-
ticipating in any lookup system must contact some
existing node. At this time, it is vulnerable to be-
ing partitioned into an incorrect network. Suppose
a set of malicious nodes has formed a parallel net-
work, running the same protocols as the real, legit-
imate network. This parallel network is entirely in-
ternally consistent and may even contain some of the
data from the real network. A new node may join this
network accidentally and thus fail to achieve correct
results. One of the malicious nodes might also be
cross-registered in the legitimate network and may
be able to cause new participants to be connected to
the parallel network even if they have a valid boot-
strap node.

Partitions can be used by malicious nodes to deny
service or to learn about the behavior of clients that it
would otherwise be unable to observe. For example,
if a service was made available to publish documents
anonymously, an adversary could establish a mali-
cious system that shadows the real one but allows it
to track clients who are reading and storing files.

In order to prevent a new node from being diverted
into an incorrect network, it must bootstrap via some
sort of trusted source. This source will likely be out-
of-band to the system itself. When rejoining the sys-
tem, a node can either use these trusted nodes, or it
can use one of the other nodes it has previously dis-
covered in the network. However, building trust met-
rics for particular nodes can be dangerous in a net-
work with highly transient nodes that lack any strong
sense of identity. If a particular address is assigned
via DHCP, for example, a node could be malicious
one day but benign the next. Again, use of public
keys may reduce this risk.

If a node believes it has successfully bootstrapped
in the past, then it can detectnewmalicious partitions
by cross-checking results. A node can maintain a
set of other nodes that it has used successfully in the
past. Then, it cancross-check routing tables using

random queries.2 By asking those nodes to do ran-
dom queries and comparing their results with its own
results, a node can verify whether its view of the net-
work is consistent with those other nodes. Note that
randomness is important so that a malicious partition
can not distinguish verification probes from a legiti-
mate query that it would like to divert. Conversely, a
node that has been trapped in a malicious partition
might accidentally discover the correct network in
this manner, where the “correct” network here is de-
fined as the one which serves desired data.

4.2 Storage and Retrieval Attacks

A malicious node could join and participate in the
lookup protocol correctly, but deny the existence of
data it was responsible for. Similarly, it might claim
to actually store data when asked, but then refuse to
serve it to clients. In order to handle this attack, the
storage layer must implement replication. Replica-
tion must be handled in a way so that no single node
is responsible for replication or facilitating access to
the replicas; that node would be a single point of fail-
ure. So, for example, clients must be able to inde-
pendently determine the correct nodes to contact for
replicas. This would allow them to verify that data is
truly unavailable with all replica sites. Similarly, all
nodes holding replicas must ensure that the replica-
tion invariant (e.g. at leastr copies exist at all times)
is maintained. Otherwise, a single node would be
able to prevent all replication from happening. In
summary,avoid single points of responsibility.

Clients doing lookups must be prepared for the
possibility of malicious nodes as well. Thus, it must
consult at least two replica sites in order to be sure
that either all of the replicas are bad or that the data
is truly missing.

As an example, DHash does not follow this prin-
ciple: only the node immediately associated with the
key is responsible for replication. However, even
if the storing node performed replication, DHash
would still be vulnerable to the actual successor lying
about ther later successors. Replication with multi-
ple hash functions, as proposed in CAN, is one way
to avoid this reliance on a single machine.

This attack can be further refined in a system that

2Of course, without a sense of node identity that is stronger
than IP address, this is still dangerous.

4



does not assign nodes verifiable identifiers. In such a
system, a node can choose to become responsible for
data that it wishes to hide. DHash continues to be at
risk here, despite Chord having verifiable node iden-
tifiers, because the identifier is derived from a hash of
the node’s IP address, port number and virtual node
number. Since a person in control of a single node
can run a large number of virtual nodes, they can
still effect some degree of choice in what data they
wish to hide. IPv6 or sparsely used IPv4 networks
may also allow a single host to have access to many
addresses.

4.3 Miscellaneous Attacks

Inconsistent Behavior Any of the attacks here can
be made more difficult to detect if a malicious node
presents a good face to part of the network. That
is, a malicious node may choose to maximize its im-
pact by ensuring that it behaves correctly for certain
nodes. One possible class would be nodes near it in
the identifier space. These nodes will not see any
reason to remove the node from their routing tables
despite the fact that nodes that are distant see poor or
invalid behavior. This may not be a serious problem
if queries must be routed through close nodes before
reaching the target node. However, most routing sys-
tems have ways of jumping to distant points in the
identifier space in order to speed up queries.

Ideally, distant nodes would be able to convince
local nodes that the “locally good” malicious node
is in fact malicious. However, without public keys
and digital signatures, it is not possible to distinguish
a report of a “locally good” node being malicious,
from a malicous report trying to tarnish a node that
is actually benign. On the other hand, with public
keys, this can be proven by requiring nodes to sign all
of their responses. Then a report would contain the
incorrect response and the incongruity could be ver-
ified. Lacking this, each node must make its own de-
termination as to whether another node is malicious.

Overload of Targeted Nodes Since an adversary
can generate packets, it can attempt to overload tar-
getted nodes with garbage packets. This is a standard
denial of service attack and not really a subversion of
the system. This will cause the node to appear to fail
and the system will be able to adapt to this as if the
node had failed in some normal manner. A system

must use some degree of data replication to handle
even the normal case of node failure. This attack
may be effective if the replication is weak (i.e. the
malicious nodes can target all replicas easily) or if
the malicious node is one of the replicas or colluding
with some of the replicas.

The impact of denial of service attacks can be
partially mitigated by ensuring that the node identi-
fier assignment algorithm assigns identifiers to nodes
randomly with respect to network topology. Addi-
tionally, replicas should be located in physically dis-
parate locations. These would prevent a localized at-
tack from preventing access to an entire portion of
the key space. If an adversary did wish to shut out
an entire portion of the key space, it would have to
flood packets all over the Internet.

Rapid Joins and Leaves As nodes join and leave
the system, the rules for associating keys to nodes
imply that new nodes must obtain data (from repli-
cas) that was stored by nodes that have left the sys-
tem. This rebalancing is required in order for the
lookup procedures to work correctly. A malicious
node could trick the system into rebalancing unnec-
essarily causing excess data transfers and control
traffic. This will reduce the efficiency and perfor-
mance of the system; it may even be possible to
overload network segments. This attack would work
best if the attacker could avoid being involved in data
movement since that would consume the bulk of the
bandwidth. An adversary might try to convince the
system that a particular node was unavailable or that
a new node had (falsely) joined. However, our model
allows the adversary no (low-bandwidth) way of ac-
complishing the former; the latter case presumably
will involve acknowledged data transfers that the ad-
versary can not correctly acknowledge. Any other
rebalancing would involve the adversary node itself,
requiring it to be involved in the data movement.

Note that any distributed hash table must provide a
mechanism for dealing with this problem, regardless
of whether there are malicious nodes present. Early
studies have shown that in some file sharing systems,
peers join and leave the system very rapidly [4]. The
rate of replication and amount of data stored at each
node must be kept at levels that allow for timely
replication without causing network overload when
even regular nodes join and leave the network.

5



Unsolicited messages A malicious node may be
able to engineer a situation where it can send an un-
solicited response to a query. For example, consider
an iterative lookup process where querierQ is re-
ferred by nodeE to nodeA. NodeE knows that
Q will next contactA, presumably with a follow-up
to the query just processed byE. Thus,E can at-
tempt to forge a message fromA toQ with incorrect
results.

The best defense against this would be to em-
ploy standard authentication techniques such as digi-
tal signatures or message authentication codes. How-
ever, digital signatures are currently expensive and
MACs require shared keys. A more reasonable de-
fense may be to include a random nonce with each
query to ensure that the response is accurate.

5 Conclusion
This paper presents a categorization of the basic at-
tacks that peer-to-peer hash lookup systems should
be aware of. It discusses details of those attacks as
applied to some specific systems, and suggests de-
fenses in many cases. It abstracts these defenses into
this set of general design principles: 1) define verifi-
able system invariants, and verify them; 2) allow the
querier to observe lookup progress; 3) assign keys to
nodes in a verifiable way; 4) be wary of server selec-
tion in routing; 5) cross-check routing tables using
random queries; and 6) avoid single points of respon-
sibility.

References
[1] DABEK , F., KAASHOEK, M. F., KARGER, D.,

MORRIS, R., AND STOICA, I. Wide-area cooper-
ative storage with CFS. InProceedings of the 18th
ACM SOSP(Banff, Canada, Oct. 2001), pp. 202–
215.

[2] FREEDMAN, M. J., SIT, E., CATES, J.,AND MOR-
RIS, R. Tarzan: A peer-to-peer anonymizing net-
work layer. In Proceedings of the First Interna-
tional Workshop on Peer-to-Peer Systems(Cam-
bridge, MA, Mar. 2002).

[3] FU, K., KAASHOEK, M. F., AND MAZI ÈRES, D.
Fast and secure distributed read-only file system. In
Proceedings of the 4th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI)
(Oct. 2000), pp. 181–196.

[4] K RISHNAMURTHY, B., WANG, J., AND X IE, Y.
Early measurements of a cluster-based architecture
for P2P systems. InProceedings of the First ACM
SIGCOMM Internet Measurement Workshop(San
Francisco, California, Nov. 2001), pp. 105–109.

[5] RATNASAMY, S., FRANCIS, P., HANDLEY, M.,
KARP, R., AND SHENKER, S. A scalable content-
addressable network. InProceedings of ACM
SIGCOMM (San Diego, California, Aug. 2001),
pp. 161–172.

[6] ROWSTRON, A., AND DRUSCHEL, P. Pastry:
Scalable, distributed object location and routing for
large-scale peer-to-peer systems. InProceedings
of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001)
(Nov. 2001).

[7] ROWSTRON, A., AND DRUSCHEL, P. Storage man-
agement and caching in PAST, a large-scale, per-
sistent peer-to-peer storage utility. InProceedings
of the 18th ACM SOSP(Banff, Canada, Oct. 2001),
pp. 188–201.

[8] ROWSTRON, A., KERMARREC, A.-M., CASTRO,
M., AND DRUSCHEL, P. SCRIBE: The design of a
large-scale event notification infrastructure. InNet-
worked Group Communication: Third International
COST264 Workshop(Nov. 2001), J. Crowcroft and
M. Hofmann, Eds., vol. 2233 ofLecture Notes in
Computer Science, Springer-Verlag, pp. 30–43.

[9] STOICA, I., MORRIS, R., KARGER, D.,
KAASHOEK, M. F., AND BALAKRISHNAN ,
H. Chord: A scalable peer-to-peer lookup service
for internet applications. InProceedings of ACM
SIGCOMM (San Diego, California, Aug. 2001),
pp. 149–160.

[10] ZHAO, B., KUBIATOWICZ , J., AND JOSEPH, A.
Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Tech. Rep. UCB/CSD-
01-1141, Computer Science Division, U. C. Berke-
ley, Apr. 2001.

6


